The transmembrane sodium gradient influences ambient GABA concentration by altering the equilibrium of GABA transporters.
نویسندگان
چکیده
Tonic inhibition is widely believed to be caused solely by "spillover" of GABA that escapes the synaptic cleft and activates extrasynaptic GABA(A) receptors. However, an exclusively vesicular source is not consistent with the observation that tonic inhibition can still occur after blocking vesicular release. Here, we made patch-clamp recordings from neurons in rat hippocampal cultures and measured the tonic current that was blocked by bicuculline or gabazine. During perforated patch recordings, the tonic GABA current was decreased by the GAT1 antagonist SKF-89976a. Zero calcium solution did not change the amount of tonic current, despite a large reduction in vesicular GABA release. Perturbations that would be expected to alter the transmembrane sodium gradient influenced the tonic current. For example, in zero calcium Ringer, TTX (which can decrease cytosolic [Na(+)]) reduced tonic current, whereas veratridine (which can increase cytosolic [Na(+)]) increased tonic current. Likewise, removal of extracellular sodium led to a large increase in tonic current. The increases in tonic current induced by veratridine and sodium removal were completely blocked by SKF89976a. When these experiments were repeated in hippocampal slices, similar results were obtained except that a GAT1- and GAT3-independent nonvesicular source(s) of GABA was found to contribute to the tonic current. We conclude that multiple sources can contribute to ambient GABA, including spillover and GAT1 reversal. The source of GABA release may be conceptually less important in determining the amount of tonic inhibition than the factors that control the equilibrium of GABA transporters.
منابع مشابه
Energetics of y-Aminobutyrate Transport in Rat Brain Synaptosomes*
The energetics of active transport of y-aminobutyric acid (GABA) by neuronal synapses has been studied using preparations of synaptosomes from rat brain. The maximal (steady state) accumulation of GABA by synaptosomes was measured as a function of the transmembrane potassium concentration gradient (which is equal to the transmembrane electrical potential in this system), the sodium concentratio...
متن کاملEvidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA.
GABA gating an anion channel primarily permeable to chloride can hyperpolarize or depolarize, depending on whether the chloride equilibrium potential (E(Cl)) is negative or positive, respectively, to the resting membrane potential (E(rest)). If the transmembrane Cl(-) gradient is set by active transport, those neurons or neuronal regions that exhibit opposite responses to GABA should express di...
متن کاملStructure, function, and plasticity of GABA transporters
GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Num...
متن کاملDynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore.
Many electrophysiologists view neurotransmitter transporters as tiny vacuum cleaners, operating continuously to lower extracellular neurotransmitter concentration to zero. However, this is not consistent with their known behavior, instead only reducing extracellular neurotransmitter concentration to a finite, nonzero value at which an equilibrium is reached. In addition, transporters are equall...
متن کاملTonically Balancing Intracortical Excitation and Inhibition by GABAergic Gliotransmission
For sensory cortices to respond reliably to feature stimuli, the balancing of neuronal excitation and inhibition is crucial. A typical example might be the balancing of phasic excitation within cell assemblies and phasic inhibition between cell assemblies. The former controls the gain of and the latter the tuning of neuronal responses. A change in ambient GABA concentration might affect the dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2006